ASBPA 2005

Sheldon Marsh Nature Preserve

U.S. Army Engineer District Buffalo, NY

Shanon A. Chader, P.E.

PHOTO DATED 13 APRIL 1999

BARRIER ISLAND RETREAT

LAKESIDE VIEW OF BARRIER BEACH

LANDSIDE VIEW OF BARRIER BEACH AND MARSH

Project Goals

- > Slow the retreat of the barrier and protect the interior wetlands
- >Allow wave energy to periodically overtop existing dunes
- ➤ Allow wave energy to wet the beach slope during wave activity
- ➤ Minimize visual impact over a wide range of water levels
- > Provide additional fish habitat
- > Minimize future maintenance.

STWAVE ANALYSIS

WAVE ENERGY BY DIRECTION:

- 43.2% TO SOUTHWEST
- 56.8% TO NORTHWEST

NEARSHORE WAVE ENERGY ROSE

Physical Model Tests

- **≻**Actual lake bottom slope
- > Refined spacing of breakwaters
- > Water Levels Modeled
 - 10-yr
 - Average
 - Low (no tests run)
- > Wave Heights Modeled
 - 20-yr
 - 2-yr
 - Average

Note:

Waves breaking at each row of submerged breakwaters.

Construction of Submerged Breakwater Segments

- ➤ 2 ft thick bedding layer that extends beyond armor layer to act as an erosion apron
- ➤ Single layer of dimensioned rubblemound armor stone. Stone size 4 ft x 4 ft x 3 ft (+/-)
- ➤ Reefballs interlocked within the breakwater matrix.

Fish Habitat

➤ Fish habitat will be provided by incorporating the Reefball System within each of the submerged breakwater segments.

Model Test Results

SHELDON MARSH MODEL STUDY AVERAGE WAVE HEIGHT AT GAUGES 8-10				
WATER LEVEL	WAVE RECURRENCE INTERVAL	AVERAGE WAVE HEIGHT - FT		PERCENT
		EXISTING	WITH PROJECT	REDUCTION
AVERAGE	AVERAGE	2.119	1.176	45
	2-YEAR	2.364	1.567	34
	20-YEAR	2.803	1.513	46
10-YEAR	AVERAGE	3.067	2.376	23
	2-YEAR	4.484	3.918	13
	20-YEAR	4.638	3.861	17

Conclusions

- ➤ Measured project wave reduction with model was 13-46%. (Actual wave dissipation should be higher than model.)
- > Wave energy will periodically overtop existing dunes
- > Wave energy will continue to wet the beach slope
- > Visual impact will be minimized during a wide range of water levels
- Additional fish habitat will be provided
- > Maintenance will be minimized.

